
Fitness Inheritance For Noisy Evolutionary Multi-Objective
Optimization

Lam T. Bui
School of ITEE, University of

New South Wales@ Australian
Defence Force Academy

NorthCott Drive, Canberra
ACT, Australia, 2600

l.bui@adfa.edu.au

Hussein A. Abbass
School of ITEE, University of

New South Wales@ Australian
Defence Force Academy

NorthCott Drive, Canberra
ACT, Australia, 2600

h.abbass@adfa.edu.au

Daryl Essam
School of ITEE, University of

New South Wales@ Australian
Defence Force Academy

NorthCott Drive, Canberra
ACT, Australia, 2600

d.essam@adfa.edu.au

ABSTRACT
This paper compares the performance of anti-noise methods,
particularly probabilistic and re-sampling methods, using
NSGA2. It then proposes a computationally less expensive
approach to counteracting noise using re-sampling and fit-
ness inheritance. Six problems with different difficulties are
used to test the methods. The results indicate that the prob-
abilistic approach has better convergence to the Pareto opti-
mal front, but it looses diversity quickly. However, methods
based on re-sampling are more robust against noise but they
are computationally very expensive to use. The proposed fit-
ness inheritance approach is very competitive to re-sampling
methods with much lower computational cost.

Categories and Subject Descriptors: B.X.X [Evolu-
tionary Multiobjective Optimization]:

General Terms: Algorithms, Performance.

Keywords: Evolutionary multiobjective optimization, noise,
probabilistic model, fitness inheritance.

1. INTRODUCTION
Evolutionary algorithms (EAs), particulary genetic algo-

rithms (GA), are known to be robust in the presence of
noise [1, 5]. Population based methods are generally known
to be robust in the single objective case against noise since
the average performance of the population acts as a fil-
ter for noise. However, in the case of evolutionary multi-
objective optimization algorithms (EMOs), the aim is to ob-
tain a Pareto set of non-dominated solutions, which makes it
harder to filter the noise. So far, comparisons of performance
in EMO have been undertaken in the presence of many types
of problem difficulties, such as: convexity, non-convexity, or
discontinuity. However, not much work has been done in
the area of noisy landscapes. In real life black–box opti-
mization problems, the existence of noise during evaluation
is inevitable. Sources of noise can vary from noise in the sen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

sors, actuators, or because of the stochasticity pertaining in
some problems such as multi–agent simulations.
The research presented in this paper aims to compare

a number of approaches to overcome noise during objec-
tive evaluation. In particular, we compare two re–sampling
techniques and a probabilistic approach proposed by Hughes
(2001). We then propose a fitness inheritance technique to
reduce the calculation time. NSGA2 is used as a standard
EMO algorithm.
The paper is divided into six sections. A review of the

EMO literature, noise, and performance metrics is given in
section 2. A description of the methods is given in the third
section. Section four presents the specifications of the ex-
periments. The results of the experiments are analyzed and
discussed in the fifth section then conclusions are drawn in
the last section.

2. BACKGROUND

2.1 EMOs
Similar to other optimization algorithms, EMOs are used

to find at least one feasible solution for a particular problem
[3]. In contrast to single objective optimization, they are as-
sociated with conflicting multi–objective functions, defining
a multi–dimensional fitness landscape. With EMOs, multi-
ple solutions are usually expected after any iteration. As a
result, this is expected to ideally lead to a population of ef-
ficient solutions when the termination condition is satisfied.
It thus offers decision makers more options from which to
choose the best solution according to some preference infor-
mation.
EMOs have to overcome two major problems [10]. The

first problem is how to get as close as possible to the Pareto
optimal front (POF). Each solution of the POF is a Pareto
solution, where no other feasible solution in the search space
is better than the former when evaluated on all objective
functions. The second problem is how to keep diversity
among solutions in the obtained set. These two problems
become common criteria for most current comparison mea-
sures.
To date, many EMOs have been developed. Generally

speaking, they can be classified into two broad categories:
non–elitism and elitism. With the elitism approach, EMOs
employ an external set to store the best solutions in each
generation. This set will then be a part of the next gen-
eration. With this method, the best individuals in each

779

generation are always preserved, and this helps the algo-
rithm to get as close as possible to the POF. NSGA2 [3]
and SPEA2 [10] are examples of this approach. In contrast,
the non elitism approach has no concept of elitism when it
selects individuals for reproduction [10]. Examples of this
approach include VEGA [8] and NSGA [3].

2.2 Noise
When EMOs are applied to real life problems, noise in the

evaluation cannot be avoided. When noise exists, it makes
the evolving process slow and affects the solution’s quality.
Generally, noise comes from many different sources, such
as: data inputting or sampling [7]. However, this paper
focuses on an important form of noise: noise in the objective
function evaluation. The way noise influences the fitness
value is varied. We use additive noise. This noise can be
seen as additional values randomly added to or subtracted
from the real fitness value. Since the noisy fitness value is
used for selection, it can mislead the algorithm to inferior
results; bad solutions might be kept for the next generation,
and the good ones might be excluded [1]. Formally, a noisy
fitness function takes the following form:

Fnoise = F+ noise (1)

where F is the noise–free fitness function and noise is a
source of noise [7]. The source of noise comes in any form
such as normal distribution or uniform distribution. In
general, the normal distribution is often used to simulate
noise [1].
In the context of EMOs, there are a few techniques to deal

with noise that have been introduced to date. Re-sampling
or re-evaluation of objective values is thoroughly investi-
gated in Miller’s PhD thesis [7]. It is a simple, but costly,
method because it requires re–evaluating a solution a num-
ber of times.
More recently, Hughes’s work introduced a probabilistic

ranking process [5]. The assumption of the method is that
a probabilistic ranking that takes into account the standard
deviation in the evaluation of each solution can be used to
correct for and avoid any inaccurate judgement because of
noise. The probabilistic rank of an individual is the sum
of all probabilities of those dominates it. Hughes’s experi-
ments assumed that the noise in all individuals come from
the same normal distribution, while claiming that the the-
oretical framework will work regardless of the previous as-
sumption. In addition, he did not estimate the variance for
every individual since all individuals are assumed to have
noise from the same distribution. For this, Hughes’s ap-
proach is expected to have an advantage in terms of compu-
tational cost. However, in reality we do not know if noise is
coming from different normal distributions or from the same
distribution. As a result, re–sampling is necessary for esti-
mating the variance of each individual independently. The
purpose of this paper is to compare Hughes approach and
re–sampling techniques, then propose a method that com-
bines the advantages of both methods.

2.3 Performance metrics
Performance metrics are usually used to compare algo-

rithms in order to form an understanding of which one is bet-
ter and in what aspects. However, it is hard to define a con-
cise definition of algorithmic performance. In general, when
doing comparisons, a number of criteria are employed [10].

We will look at two of these criteria. The first measure is
the generation distance, GD, which is the average distance
from the set of solutions found by evolution to the POF [9]:

GD =

qPN
i=1 d

2
i

N
(2)

where di is the Euclidean distance (in objective space) from
solution i to the nearest solution in the POF. If there is a
large fluctuation in the distance values, it is also necessary
to calculate the variance of the metric. Finally, the objective
values should be normalized before calculating the distance.
The second metric presented in this section uses the statis-

tical comparison method. It was first introduced by Fonesca
and Fleming [4]. For EMO experiments, which generate a
large set of solutions, this metric is often the most suitable,
as their data can easily be assessed by statistical methods.
Knowles and Corne [6] modified this metric and instead
of drawing parallel lines, all lines originate from the origin.
The basic idea is as follows: suppose that two algorithms
(A1, A2) result in two non-dominated sets: P1 and P2 (as
in Figure 1). The lines that join the solutions in P1 and P2
are called attainment surfaces. The comparison is carried
out in the objective space. In order to do the compari-
son, a number of lines are drawn from the origin (assuming
minimization problem), such that they intersect with the
surfaces. The comparison is then individually done for each
sampling line to determine which one outperforms the other.
Each intersection line will then yield to a number of inter-
section points. In this case, statistical tests are necessary to
determine the percentage an algorithm outperforming the
other in each section. For both of these methods, the final
result is two numbers that show the percentage of the space
where each algorithm outperforms the other.

Figure 1: Sampling the non-dominated sets using
lines of intersection

3. METHODS

3.1 Original NSGA2
NSGA2 is an elitism algorithm [3]. The main feature of

NSGA2 lies in elitism-preservation operation. Firstly, the
archive size is set equal to the initial population size. The
current archive is then determined based on the combination
of the current population and the previous archive. To do
this, NSGA2 uses dominance ranking to classify the popula-
tion into a number of layers, such that the first layer is the
best layer in the population. The archive is created based
on the order of ranking layers: the best rank being selected

780

first. If the number of individuals in the archive is smaller
than the population size, the next layer will be taken into
account and so forth. If adding a layer makes the number
of individuals in the archive exceeds the initial population
size, a truncation operator is applied to that layer based on
crowding distance.
The crowding distance of a solution x is calculated as fol-

lows: the population is sorted according to each objective
to find adjacent solutions to x ; boundary solutions are as-
signed infinite values; the average of the differences between
the adjacent solutions in each objective is calculated; the
truncation operator removes the individual with the small-
est crowding distance.

D(x) =

MX
m=1

F
Im
x +1

m − F
Im
x −1

m

Fmax
m − Fmin

m

(3)

in which F is the vector of objective values. Im
x returns the

sorted index of the solution x, according to objective m-th.
An offspring population of the same size as the initial pop-

ulation is then created from the archive by using crowded
tournament selection, crossover, and mutation operators.
Crowded tournament selection is a traditional tournament
selection method, but when two solutions have the same
rank, it uses the crowding distance to break the tie.

3.2 Probabilistic-based NSGA2
We use Hughes’s probabilistic model [5] and adopt it to

NSGA2. In the presence of noise, the objective value of an
individual A may be smaller than an individual B while the
A’s noise–free value is greater. As a result, if a decision
is made that A is better than B (assuming minimization),
inferior solutions will be selected more often. Therefore, in a
noisy environment, a probabilistic decision is more adequate.
The probability in which A is better than B is estimated
based on an estimate of uncertainty in the values assigned
to A and B. This estimate uses the variance of the expected
noise in both solutions.
Hughes proposed a probabilistic ranking model. It gives

an individual a rank that is the sum of probabilities that
each individual in the population dominates the individual
of interest. This probability is interpreted as probability of
the wrong decision made on two individuals (Equation 4).
So, the smaller the rank, the better the individual.

P (A > B) ≈ 1

1 + e
− 2.5m√

2+2s2

(4)

with m = µa−µb
σb

s = σa
σb

in which µ and σ are the mean

and standard deviation of the fitness values of A and B,
respectively.
In this paper, we generated a probabilistic version of NSGA2,

called NSGA2 − P , using Hughes’ probabilistic framework
in order to deal with noise. NSGA2’s ranking and crowding
distance are replaced with probabilistic ranking and crowd-
ing distance, respectively. The original NSGA2 uses objec-
tive values to rank the individuals, while probabilistic–based
NSGA2 uses the probability that an individual dominates
another. In the multi–objective optimization context, the
concept of dominance needs to be generalized. Formally,
suppose that there are K objectives, three types of proba-
bilities are calculated as follows

P (A > B) =

KY
k=1

P (Ak > Bk)

P (A < B) =

KY
k=1

(1− P (Ak > Bk))

P (A ≡ B) = 1− P (A < B)− (A > B) (5)

where, P (Ak > Bk) is the probability that A is better than
B in objective k and P (A ≡ B) is the probability that A
and B are non–dominated.
Now, the rank of an individual i is calculated as follows:

Ri =
NX

j=1

P (Indj > Indi)+
1

2

NX
j=1

P (Indj ≡ Indi)−0.5 (6)

where P (Indj > Indi) is the probability that individual j is
better than i.
For the sake of simplicity of implementation, the double-

valued ranks are converted equivalently to integral ranks.
In NSGA2, solutions with the same rank are grouped and
sorted into layers. All solutions within a layer are selected
and added to the archive. When the number of solutions in
a layer exceeds the number of solutions required to fill the
archive, a truncation process is undertaken.
We adapt both the selection and truncation processes to

the probabilistic method as well. In the selection process,
if the rank of a solution A is better than B’s, A is selected.
If they have the same rank, a probabilistic tournament se-
lection is undertaken as follows: A random number R is
generated. If R < P (AD > BD) , A is selected and vice
versa. P (AD > BD) is calculated as in Equation 4 in which

m = D(A)−D(B)
σb

.

During the truncation process, the crowding distance, D,
is calculated for each individual. In the probabilistic version,
Equation 3 is replaced with Equation 7.

Rx =
NX

y=1

P (yD > xD)− 0.5 (7)

N is the population size, and P (yD > xD) is the proba-
bility that an individual y has a better crowding distance
than individual x. An individual with the largest value of
R will be truncated first until the maximum archive size is
maintained.

3.3 Resampling–based NSGA2
In this paper, an objective value is evaluated a number

of times to reduce the effect of noise. Suppose that, the
objective value is evaluated N times, the re-sampled value
is calculated as follows:

F =

PN
k=1(fk)

N
(8)

With N times of evaluation, we can estimate the standard
deviation as follows:

σ =

sPN
i=1 x

2
i − (N

i=1 xi)2

N

N − 1
(9)

The performance of the re-sampling technique will be tested
on the base of NSGA2 with two different versions: One with

781

fitness value F called NSGA2 − R and the other with F
σ

called NSGA2−RS. The former estimates the mean, while
the latter takes into account the variance as a measure of
stability and confidence in the mean.

3.4 Fitness inheritance in NSGA2
Since all of the previous three algorithms works by re-

evaluating each individual a number of times, it is usually a
computationally expensive task. Fitness inheritance works
by assigning a child a weighted sum of the parents’ fitness
values [2]. However, one of the main challenges in fitness
inheritance is to decide when and when not to inherit. We
propose a variation of the re-sampling technique based on
fitness inheritance.
In the proposed algorithm, the child inherits the mean

fitness of the two parents. The child is then evaluated only
once to generate a single objective value for each noisy objec-
tive function. If this value falls within a confidence interval
based on the inherited fitness, the inherited fitness is ac-
cepted and the algorithm continues; otherwise, the child is
re-evaluated a number of time and a mean and a standard
deviation are estimated. Formally, suppose that two parents
A and B are selected to generate a child C, the proposed fit-
ness inheritance process takes place as follows:
1. Define µ = µ1+µ2

2
and σ = σ1+σ2

2
2. Evaluate C ’s objective value f
3. If (µ− 3 ∗ σ ≤ f ≤ µ+ 3 ∗ σ)
Assign µ as C ’s objective value and σ as C ’s standard

deviation.
4. Else
Evaluate C for another nine times to estimate the objec-

tive values and the standard deviation.
The re-sampling and probabilistic versions of the fitness

inheritance technique are referred to as NSGA2-RH and
NSGA2-PH respectively.

4. EXPERIMENTAL SETUP
We have compared the algorithms with all six Zitler’s

problems [10]. Each case is tested with thirty different ran-
dom seeds. The POF of these problems takes different forms
such as convex, non-convex and discontinuous. All the prob-
lems have two objectives,f1(x) and f2(x), that must be min-
imized. For each problem, f2(x) = g(x) ∗ h(f1(x), g(x)),
while functions f1, g and h are uniquely defined for each.
We assume that the noise associated with each individual

is coming from Normal distributions with the same mean,
but with different variances. However, all variances are sam-
pled from a hyper-Normal distribution with fixed parameter
values. Our conjecture is that this setup is a challenge for
those methods that work only when the source of noise in
all individuals is the same. Also, this setup is more suitable
for many real life applications such as applications in con-
trol or signal processing, where the variance in the noise can
change under different experimental setups.
We use a Gaussian distribution N(0,σ) with zero mean to

simulate noise. σ is sampled from a hyper–Gaussian distri-
bution with 0.12 mean and 0.025 variance. When calculating
the objective values for each individual in the population,
noise will be added as follows:

Freal = F + N(0,σ), σ = N(0.12,0.025)

For the statistical comparison, we use 500 lines to divide
the objective space. We introduce the concept of NETgain

instead. Each algorithm is compared against the original
NSGA2 ran without noise in the fitness evaluations. At each
generation, the NETgain of an algorithm is determined as
follows:

NETgain = 100− (X − Y)

where X is the percentage that the original NSGA2 ran with-
out noise outperforms the corresponding algorithm ran with
noise, while Y is the percentage that the algorithm ran with
noise outperforms the original NSGA2 ran without noise.
The NETgain shows how good the performance of an algo-
rithm is in comparison to the original NSGA2 in a noiseless
environment. This measure would have a maximum value of
100 when X = Y ; that is, when the algorithm running with
noisy fitness is either performing equivalent to the original
NSGA2 ran without noise (i.e. X = Y = 0) or that the two
algorithms outperformed each others equally. Ideally, we
want this measure to be as close as possible to 100. How-
ever, practically, this is not possible unless we are able to
filter the noise in the evaluation.
We also use the number of individuals in the non-dominated

set and the generation distance as supportive metrics. The
population size is set to 100, the number of generations to
1000, and each individual is evaluated 10 different times.

5. RESULTS AND DISCUSSION
To understand the dynamics of each method, we calcu-

lated the comparison metrics in each generation. The NET-
gains over time for each algorithm including NSGA2-P, NSGA2-
R, NSGA2-RS, NSGA2-RH, NSGA2-PH and the original
NSGA2 in each problem are generated.

0 200 400 600 800 1000
0

50

100
ZDT4

0 200 400 600 800 1000
0

50

100
ZDT5

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

0 200 400 600 800 1000
0

50

100

N
E

T
G

a
in

N
S

G
A

2
−

P

N
S

G
A

2
−

R

N
S

G
A

2
−

R
H

N

S
G

A
2
−

P
H

N

S
G

A
2
−

R
S

N

S
G

A
2

Figure 2: The NET–gains of the five derived algo-
rithms for ZDT4, ZDT5. The x-axis represents the
number of generation and the y-axis represents the
NET–gain by each algorithm.

782

The results show that NSGA2-P takes over in the first
100 generations for all problems except in the case of ZDT4
and ZDT5 (Figure 2). In later generations, the NETgain
for all algorithms is zero, which means that all algorithms
are overtaken by NSGA2 using noise–free evaluations. This
is perfectly expected since NSGA2 without noise should be
the ceil for the performance. What is important in these
figures is that NSGA2-P seems to perform worse because of
its initial fast convergence. Obviously, NSGA2-R makes a
considerable improvement over the original NSGA2 in the
presence of noise.
For ZDT4, algorithms are constrained by multi layers of

local optima. In early generations, NSGA2-P is still the
winner. However, the resampling-based approaches shows a
better capacity of filtering noise over time. For ZDT5, all
algorithms converge to a deceptive local optimal front. It is
clear that the resampling once more is better.
In all problems, the fitness inheritance approach is con-

sistent with its variant; that is, the fitness inheritance with
probabilistic model is as bad as the probabilistic model while
the fitness inheritance with resampling is as good as the re-
sampling method (see Fig. 2).
We take a look further at generation distances (See Fig.

3-4). Once more, NSGA2-P is slightly better than the others
in early generations. However, NSGA2-R and NSGA2-RS
are better than NSGA2-P on ZDT1-ZDT3 and ZDT6, and
competitive on ZDT4 and ZDT5 as time progresses. It seems
that ZDT4 and ZDT5 with deceptive and multi-modal dif-
ficulties cause problems for the resampling-based methods,
while the mistakes occurring in NSGA2-P helps it to escape
the problem difficulties. This is normal since small noise can
help an algorithm to escape local optima. Still, over time
the generation distance for NSGA2-P gets slightly smaller.
The improvement in generation distance for NSGA2-P

and the deterioration of the statistical measure may seem
contradictory. However, on a closer look at the visualization
of the Pareto front, it becomes evidenced that the deterio-
ration of the statistical measure for NSGA2-P is because of
loss of diversity in its non-dominated set (Figures 5–6).
The findings are clearer when looking further to all snap-

shots of the Pareto set found by evolution over time. NSGA2-
P is inferior in all problems. Its non-dominated sets heav-
ily loose diversity. This lack of diversity makes it hard for
NSGA2-P to search for suitable solutions in order to con-
verge to the POF. One possible reason is the possible loss of
extreme solutions with NSGA2-P when it builds the archive
while resampling-based methods do not to some extent. We
also found out that NSGA2-P’s exploration capability is sub-
stantially limited when we looked at the convergence of the
non-dominated set over time. The algorithm was not able
to recover from genetic drift.
We also calculated the number of non-dominated solu-

tions, but could not visualize it for the space limitation.
Except for ZDT5, the number of non-dominated solutions
of NSGA2-P is many times smaller than NSGA2-R and
NSGA2-RS. For ZDT5, the number of non-dominated set
of NSGA2-P is quite high but with very small spread, which
implies that NSGA2-P suffers substantially from genetic-
drift.
To discover the underlying reason for the inferior perfor-

mance of NSGA2-P, we undertook further experiments in
which the algorithm is tested with two alternatives: using
NSGA2-R niching plus probabilistic selection, and proba-

0 500 1000
0

0.05

0.1
ZDT1

0 500 1000
0

0.05

0.1
ZDT2

0 500 1000
0

0.05

0.1
ZDT3

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

0 500 1000
0

0.05

0.1

N
S

G
A

2
−

P

N
S

G
A

2
−

R

N
S

G
A

2
−

R
H

N

S
G

A
2

−
P

H

N
S

G
A

2
−

R
S

N

S
G

A
2

G
e

n
e

r
a

t
i
o

n

D

i
s
t
a

n
c
e

Figure 3: Five derived algorithms with the gener-
ation distance values of the non-dominated sets for
ZDT1, ZDT2 and ZDT3.

bilistic niching plus the NSGA2-R selection. We could not
find any improvement in terms of performance.
These results came surprising because they imply that the

employed niching mechanisms have no effect on NSGA2-P’s
performance. This explains the loss of diversity. The slight
difference is just because of selection techniques. When we
verified this, we found out that the niching module was
not called. The individuals were taken one by one to the
archive until it is full. These results also pose a question
about the correctness of integrating probabilistic model with
population-based model in which probabilistic model as-

783

0 500 1000
0

0.5

1
ZDT4

0 500 1000
0

0.5

1
ZDT5

0 500 1000
0

0.5

1
ZDT6

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

N
S

G
A

2
−

P

N
S

G
A

2
−

R

N
S

G
A

2
−

R
H

N

S
G

A
2

−
P

H

N
S

G
A

2
−

R
S

N

S
G

A
2

G
e

n
e

r
a

t
i
o

n

D

i
s
t
a

n
c
e

Figure 4: Five derived algorithms with the gener-
ation distance values of the non-dominated sets for
ZDT4, ZDT5 and ZDT6.

sumes that the solutions represent an independent sample,
meanwhile solutions in a population are somewhat corre-
lated as a result of the evolutionary operators.
Lastly, we looked at the amount of savings resultant from

using the fitness inheritance approach. Table 1 lists the
percentage of computations saved when using fitness inher-
itance. It is clear that there is a substantial amount of sav-
ings without deteriorating the performance.

0 0.5 1
0

1

2

ZDT1

0 0.5 1
0

1

2

ZDT2

0 0.5 1
−1

0
1
2

ZDT3

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
−1

0
1
2

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
−1

0
1
2

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
−1

0
1
2

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
−1

0
1
2

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
−1

0
1
2

Obtained set
Pareto front

N
S

G
A

2

N
S

G
A

2
−

R

N
S

G
A

−
R

H

N
S

G
A

2
−

R
S

N

S
G

A
2

−
P

H

N
S

G
A

2
−

P

f1

f2

Figure 5: A snapshot of non-dominated sets of
the original NSGA2 and five derived algorithms on
ZDT1, ZDT2, and ZDT3.

Table 1: Evaluation times.
Test Savings by

Function NSGA2−RH
ZDT1 30%
ZDT2 29%
ZDT3 24%
ZDT4 17%
ZDT5 33%
ZDT6 29%

784

0 0.5 1
0

1

2

ZDT4

0 10 20 30
0

10

20
ZDT5

0 0.5 1
0

1

2

ZDT6

0 0.5 1
0

1

2

0 10 20 30
0

10

20

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 10 20 30
0

10

20

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 10 20 30
0

10

20

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 10 20 30
0

10

20

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 10 20 30
0

10

20

0 0.5 1
0

1

2

Obtained set
Pareto front

N
S

G
A

2

N
S

G
A

2
−

R

N
S

G
A

−
R

H

N
S

G
A

2
−

R
S

N

S
G

A
2

−
P

H

N
S

G
A

2
−

P

f1

f2

Figure 6: A snapshot of non-dominated sets of
The original NSGA2 and five derived algorithms on
ZDT4, ZDT5, and ZDT6.

6. CONCLUSION
In this paper, we scrutinized the performance of anti-noise

methods on the six ZDT problems. Re-sampling and prob-
abilistic methods are compared in the context of NSGA2.
The noisy environment is established by adding a random
amount of noise to each individual. The variance of each
noise level was generated from a hyper-normal distribution.
The results show that the diversity of the probabilistic ap-
proach is inferior in comparison to resampling.
In order to reduce the computational cost of these algo-

rithms, we also used fitness inheritance. The performance of

different methods was maintained while a substantial amount
of reduction in the computational cost was achieved.
For future work, we believe that the probabilistic ap-

proach still has merit if we improve its selection procedure.

7. ACKNOWLEDGMENTS
This work is supported by the University of New South

Wales grant PS04411 and the Australian Research Council
(ARC) Centre on Complex Systems grant number CEO0348249.
The authors would like to thank the anonymous reviewers
for their useful comments.

8. REFERENCES
[1] D. Bche, P. Stoll, R. Dornberger, and

P. Koumoutsakos. Preprint: Multi-objective
evolutionary algorithm for the optimization of noisy
combustion processes. IEEE TRansaction on Systems,
Man, and cybernetic, 32(4), 2002.

[2] J. H. Chen, D. Goldberg, K. Satry, and S. H. Ho.
Fitness inheritcance in multi-objective optimization.
Technical Report 2002017, IlliGAL, University of
Illinoise at Urbana-Champaign, 2002.

[3] K. Deb. Multiobjective Optimization using
Evolutionary Algorithms. John Wiley and Son Ltd,
New York, USA, 2001.

[4] C.M. Fonseca and P.J. Fleming. On the performance
assessement and comparision of stochastic
multiobjective optimizers. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN IV, Lecture
Notes in Computer Science, pages 584–593. Springer
Verlag, Berlin Germany, 1996.

[5] E. J. Hughes. Evolutionary multi-objective ranking
with uncertainty and noise. In Zitzler et al., editor,
Proceedings of the First Conference on Evolutionary
Multi-Criterion Optimization, Zurich, Switzeland,
2001.

[6] J. Knowles and D. Corne. Approximating the
nondominated front using the pareto archibed evoltion
strategy. Evolutionary Computation, 8(2):149–172,
2000.

[7] B.L. Miller. Noise, Sampling, and Efficient Genetic
Algorithms, PhD thesis, Department of
ComputerScience. PhD thesis, Department of
ComputerScience, Univeristy of Illinoise at
Urbana-Champaign, 1997.

[8] J.D. Schaffer. Multiple objective optimization with
vector evaluated genetic algorithms. In Genetic
Algorithms and their Applications:Proceedings of the
First International Conference on Genettic
Algorithms, pages 93–100, Hillsdale, New Jersey, 1985.

[9] D. A. V. Veldhuizen and G. B. Lamont.
Multiobjective evolutionary algorithm test suites. In
J. Carroll, H. Haddad, D. Oppenheim, B. Bryant, and
G.B. Lamont, editors, ACM Symposium on Applied
Computing. ACM, 1999.

[10] E. Zitzler, L. Thiele, and K. Deb. Comparision of
multiobjective evolutionary algorithms: Emprical
results. Evolutionary Computation, 8(1):173–195,
2000.

785

